3.434 \(\int \frac {x^3 (a+b \cosh ^{-1}(c x))^n}{\sqrt {1-c^2 x^2}} \, dx\)

Optimal. Leaf size=323 \[ \frac {3^{-n-1} e^{-\frac {3 a}{b}} \sqrt {c x-1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,-\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 c^4 \sqrt {1-c x}}+\frac {3 e^{-\frac {a}{b}} \sqrt {c x-1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{8 c^4 \sqrt {1-c x}}-\frac {3 e^{a/b} \sqrt {c x-1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{8 c^4 \sqrt {1-c x}}-\frac {3^{-n-1} e^{\frac {3 a}{b}} \sqrt {c x-1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (n+1,\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 c^4 \sqrt {1-c x}} \]

[Out]

1/8*3^(-1-n)*(a+b*arccosh(c*x))^n*GAMMA(1+n,-3*(a+b*arccosh(c*x))/b)*(c*x-1)^(1/2)/c^4/exp(3*a/b)/(((-a-b*arcc
osh(c*x))/b)^n)/(-c*x+1)^(1/2)+3/8*(a+b*arccosh(c*x))^n*GAMMA(1+n,(-a-b*arccosh(c*x))/b)*(c*x-1)^(1/2)/c^4/exp
(a/b)/(((-a-b*arccosh(c*x))/b)^n)/(-c*x+1)^(1/2)-3/8*exp(a/b)*(a+b*arccosh(c*x))^n*GAMMA(1+n,(a+b*arccosh(c*x)
)/b)*(c*x-1)^(1/2)/c^4/(((a+b*arccosh(c*x))/b)^n)/(-c*x+1)^(1/2)-1/8*3^(-1-n)*exp(3*a/b)*(a+b*arccosh(c*x))^n*
GAMMA(1+n,3*(a+b*arccosh(c*x))/b)*(c*x-1)^(1/2)/c^4/(((a+b*arccosh(c*x))/b)^n)/(-c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.73, antiderivative size = 375, normalized size of antiderivative = 1.16, number of steps used = 10, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {5798, 5781, 3312, 3307, 2181} \[ \frac {3^{-n-1} e^{-\frac {3 a}{b}} \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 c^4 \sqrt {1-c^2 x^2}}+\frac {3 e^{-\frac {a}{b}} \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{8 c^4 \sqrt {1-c^2 x^2}}-\frac {3 e^{a/b} \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{8 c^4 \sqrt {1-c^2 x^2}}-\frac {3^{-n-1} e^{\frac {3 a}{b}} \sqrt {c x-1} \sqrt {c x+1} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \text {Gamma}\left (n+1,\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 c^4 \sqrt {1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*(a + b*ArcCosh[c*x])^n)/Sqrt[1 - c^2*x^2],x]

[Out]

(3^(-1 - n)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, (-3*(a + b*ArcCosh[c*x]))/b])/(8*
c^4*E^((3*a)/b)*Sqrt[1 - c^2*x^2]*(-((a + b*ArcCosh[c*x])/b))^n) + (3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcC
osh[c*x])^n*Gamma[1 + n, -((a + b*ArcCosh[c*x])/b)])/(8*c^4*E^(a/b)*Sqrt[1 - c^2*x^2]*(-((a + b*ArcCosh[c*x])/
b))^n) - (3*E^(a/b)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*ArcCosh[c*x])^n*Gamma[1 + n, (a + b*ArcCosh[c*x])/b])/
(8*c^4*Sqrt[1 - c^2*x^2]*((a + b*ArcCosh[c*x])/b)^n) - (3^(-1 - n)*E^((3*a)/b)*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a
 + b*ArcCosh[c*x])^n*Gamma[1 + n, (3*(a + b*ArcCosh[c*x]))/b])/(8*c^4*Sqrt[1 - c^2*x^2]*((a + b*ArcCosh[c*x])/
b)^n)

Rule 2181

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> -Simp[(F^(g*(e - (c*f)/d))*(c +
d*x)^FracPart[m]*Gamma[m + 1, (-((f*g*Log[F])/d))*(c + d*x)])/(d*(-((f*g*Log[F])/d))^(IntPart[m] + 1)*(-((f*g*
Log[F]*(c + d*x))/d))^FracPart[m]), x] /; FreeQ[{F, c, d, e, f, g, m}, x] &&  !IntegerQ[m]

Rule 3307

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/(E^(
I*k*Pi)*E^(I*(e + f*x))), x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d
, e, f, m}, x] && IntegerQ[2*k]

Rule 3312

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5781

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Dist[(-(d1*d2))^p/c^(m + 1), Subst[Int[(a + b*x)^n*Cosh[x]^m*Sinh[x]^(2*p + 1), x], x, ArcCos
h[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p
+ 1/2] && GtQ[p, -1] && IGtQ[m, 0] && (GtQ[d1, 0] && LtQ[d2, 0])

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {x^3 \left (a+b \cosh ^{-1}(c x)\right )^n}{\sqrt {1-c^2 x^2}} \, dx &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x^3 \left (a+b \cosh ^{-1}(c x)\right )^n}{\sqrt {-1+c x} \sqrt {1+c x}} \, dx}{\sqrt {1-c^2 x^2}}\\ &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int (a+b x)^n \cosh ^3(x) \, dx,x,\cosh ^{-1}(c x)\right )}{c^4 \sqrt {1-c^2 x^2}}\\ &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int \left (\frac {3}{4} (a+b x)^n \cosh (x)+\frac {1}{4} (a+b x)^n \cosh (3 x)\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c^4 \sqrt {1-c^2 x^2}}\\ &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int (a+b x)^n \cosh (3 x) \, dx,x,\cosh ^{-1}(c x)\right )}{4 c^4 \sqrt {1-c^2 x^2}}+\frac {\left (3 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int (a+b x)^n \cosh (x) \, dx,x,\cosh ^{-1}(c x)\right )}{4 c^4 \sqrt {1-c^2 x^2}}\\ &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int e^{-3 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^4 \sqrt {1-c^2 x^2}}+\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int e^{3 x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^4 \sqrt {1-c^2 x^2}}+\frac {\left (3 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int e^{-x} (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^4 \sqrt {1-c^2 x^2}}+\frac {\left (3 \sqrt {-1+c x} \sqrt {1+c x}\right ) \operatorname {Subst}\left (\int e^x (a+b x)^n \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^4 \sqrt {1-c^2 x^2}}\\ &=\frac {3^{-1-n} e^{-\frac {3 a}{b}} \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 c^4 \sqrt {1-c^2 x^2}}+\frac {3 e^{-\frac {a}{b}} \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{8 c^4 \sqrt {1-c^2 x^2}}-\frac {3 e^{a/b} \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {a+b \cosh ^{-1}(c x)}{b}\right )}{8 c^4 \sqrt {1-c^2 x^2}}-\frac {3^{-1-n} e^{\frac {3 a}{b}} \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right )^n \left (\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{-n} \Gamma \left (1+n,\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )}{8 c^4 \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.31, size = 292, normalized size = 0.90 \[ \frac {3^{-n-1} e^{-\frac {3 a}{b}} \sqrt {1-c^2 x^2} \left (a+b \cosh ^{-1}(c x)\right )^n \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^{-2 n} \left (3^{n+2} e^{\frac {4 a}{b}} \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^n \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^n \Gamma \left (n+1,\frac {a}{b}+\cosh ^{-1}(c x)\right )-\left (\frac {a}{b}+\cosh ^{-1}(c x)\right )^n \left (\left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^n \Gamma \left (n+1,-\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )+3^{n+2} e^{\frac {2 a}{b}} \left (-\frac {\left (a+b \cosh ^{-1}(c x)\right )^2}{b^2}\right )^n \Gamma \left (n+1,-\frac {a+b \cosh ^{-1}(c x)}{b}\right )-e^{\frac {6 a}{b}} \left (-\frac {a+b \cosh ^{-1}(c x)}{b}\right )^{2 n} \Gamma \left (n+1,\frac {3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )\right )\right )}{8 c^4 \sqrt {\frac {c x-1}{c x+1}} (c x+1)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^3*(a + b*ArcCosh[c*x])^n)/Sqrt[1 - c^2*x^2],x]

[Out]

(3^(-1 - n)*Sqrt[1 - c^2*x^2]*(a + b*ArcCosh[c*x])^n*(3^(2 + n)*E^((4*a)/b)*(-((a + b*ArcCosh[c*x])/b))^n*(-((
a + b*ArcCosh[c*x])^2/b^2))^n*Gamma[1 + n, a/b + ArcCosh[c*x]] - (a/b + ArcCosh[c*x])^n*((-((a + b*ArcCosh[c*x
])^2/b^2))^n*Gamma[1 + n, (-3*(a + b*ArcCosh[c*x]))/b] + 3^(2 + n)*E^((2*a)/b)*(-((a + b*ArcCosh[c*x])^2/b^2))
^n*Gamma[1 + n, -((a + b*ArcCosh[c*x])/b)] - E^((6*a)/b)*(-((a + b*ArcCosh[c*x])/b))^(2*n)*Gamma[1 + n, (3*(a
+ b*ArcCosh[c*x]))/b])))/(8*c^4*E^((3*a)/b)*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(-((a + b*ArcCosh[c*x])^2/b^2
))^(2*n))

________________________________________________________________________________________

fricas [F]  time = 0.64, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} x^{2} + 1} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{n} x^{3}}{c^{2} x^{2} - 1}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*x^2 + 1)*(b*arccosh(c*x) + a)^n*x^3/(c^2*x^2 - 1), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [F(-2)]  time = 180.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \left (a +b \,\mathrm {arccosh}\left (c x \right )\right )^{n}}{\sqrt {-c^{2} x^{2}+1}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x)

[Out]

int(x^3*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}^{n} x^{3}}{\sqrt {-c^{2} x^{2} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*arccosh(c*x))^n/(-c^2*x^2+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((b*arccosh(c*x) + a)^n*x^3/sqrt(-c^2*x^2 + 1), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^3\,{\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}^n}{\sqrt {1-c^2\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(a + b*acosh(c*x))^n)/(1 - c^2*x^2)^(1/2),x)

[Out]

int((x^3*(a + b*acosh(c*x))^n)/(1 - c^2*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )^{n}}{\sqrt {- \left (c x - 1\right ) \left (c x + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*acosh(c*x))**n/(-c**2*x**2+1)**(1/2),x)

[Out]

Integral(x**3*(a + b*acosh(c*x))**n/sqrt(-(c*x - 1)*(c*x + 1)), x)

________________________________________________________________________________________